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Abstract 

Background: Purpose of this study was to evaluate out of 

field dose calculation accuracy against measured dose and 

comparing the dose to healthy tissue between VMAT and 

IMRT plans. Methods and materials: We created a plan 

with various field sizes to deliver 1Gy dose at 1.58cm in a 

homogeneous phantom. The calculated dose along the 

central axis at three depths 1.58cm, 5.0cm and 10.0cm 

was noted down. Calculated monitor unit was delivered 

and measured. Dose difference between calculated and 

measured was found. Ten patients with prostate cancer 

were selected to evaluate healthy tissue dose with VMAT 

and IMRT plans. Difference between VMAT and IMRT 

plans was compared statistically. Results: The deviation 

between calculated and measured was lesser than 1% 

within the field. From field edge to 5cm the maximum 

deviation was -36%, -28% and -15% at Dmax, 5cm and 

10cm depths respectively among all points. For larger 

field size the percentage of error was larger. VMAT 

controlled the higher doses to healthy tissue within the 

treatment field along with low and intermediate doses to 

tissues out of the treatment field (p<0.002). Conclusion: 

Out of field dose calculation accuracy was reduced for 

larger field size. VMAT can control dose to healthy tissue 

volume and it can help to reduce secondary cancer risk. 

 

 

Keywords: Intensity Modulated Radiation Therapy, out 

of field dose, secondary cancer, Volumetric Modulated 

Arc Therapy. 

Introduction 

Though technologies have improved in external 

radiotherapy for conformal delivery of prescribed dose to 

the tumor, healthy tissues are still unavoidably irradiated. 

Few studies reported that radiation is one of the clear risk 

factor for secondary cancers [1-2]. A secondary 

malignancy is a histological distinct cancer that develops 

after the first cancer. Radiotherapy patients are at greater 

risk of developing a solid cancer than the general 

population [3].  

Risk of secondary malignancy changed based on the Age, 

Sex and dose distribution [4-9]. Secondary malignancy 

risk changes 1) according to different dose distributions 

like low and high dose; 2) irradiation of different locations 

like healthy tissue within the primary treatment volume, at 

field edge and peripheral volume [10,3]. 

Dose received healthy tissues are classified into two 

categories; 1) healthy tissues within the treatment volume 

and 2) healthy tissues outside of the treatment volume. 

Dose to the healthy tissues is considered as non-target 

dose. This non-target dose is classified into three 

categories based on the approximate dose level. (i) high 
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dose (more than 30Gy or 50% of the prescribed dose), (ii) 

intermediate dose (3- 30Gy or 5- 50% of the prescribed 

dose) and (iii) low dose (less than 3Gy or 5% of the 

prescribed dose) [10]. Low radiation outside the treatment 

volume can cause deleterious effects to the patient [11].  

Diallo et al. [12] found that 66% of secondary cancers 

occurred at the periphery of the treatment volume (from 

the field edge to 5cm), 22% occurred beyond 5cm from 

the treatment field and 12% occurred within the treatment 

volume. 

The increasing modulation to achieve the planning 

objectives requires a large number of monitor unit leading 

to an increase in the head leakage and subsequent increase 

in the peripheral dose [11]. Increasing number of fields 

results in irradiation of a larger volume of healthy tissues 

[13]. 

Dose distribution with different delivery techniques differs 

due to their degrees of freedom. The requirement for each 

technique is different such as the method of delivery, 

number of monitor unit and number of fields [4,13]. 

A good radiotherapy plan should not only deliver the 

intended dose to tumor and spare critical structures but 

should also avoid the irradiation of surrounding healthy 

tissues as much as possible. According to the Task Group 

(TG) -158 [10] recommendations, plan evaluation has to 

include documentation of healthy tissue received dose 

since radiation is one of the carcinogenic factors.  

Besides, many studies reported that between 3.75 cm and 

11cm from field edge the average difference between 

measured and calculated dose was 40% to 50% [10,14]  

and especially in the dose range of 5% to 0.1% the 

difference would be larger [10]. Few more studies also 

showed that out of field dose calculation accuracy of 

commercially available planning systems underestimate 

the dose, therefore the dose evaluation of organs for 

estimating the risk involvement becomes a challenging 

task.  

For precise plan evaluation, the calculated out of field 

dose by treatment planning systems has to be validated 

against the measured values. Dose calculation accuracy 

would help for risk estimation as well as in many clinical 

situations such as treatment of pregnant patients or 

patients with implanted pacemakers [15]. Therefore, we 

intended to carry out this study to validate our Treatment 

Planning Systems (TPS) against measured dose as well as 

comparing the out of field healthy tissue dose between 

VMAT and IMRT plans. 

Methods and materials 

For the validation of dose calculation accuracy, plans were 

created in a homogeneous water phantom using Eclipse 

TPS (10.0.39). 1 Gy dose was prescribed to the reference 

point at the depth of 1.58cm (Dmax) along the central axis 

for 100cm SSD. With this similar condition, dose was 

calculated for various field sizes ranging from 5X5 cm2 to 

40x40 cm2. Dose was calculated using Anisotropic 

Analytical Algorithm (AAA) algorithm with 2.5mm 

calculation grid size. The calculated dose at central axis 

within the treatment field was noted down and out of field 

dose along the primary axis at six points (1cm, 2cm, 3cm, 

4cm 5cm and 6cm from field edge) was noted down. 

Similarly, dose at 5cm depth and 10cm depth was also 
noted down (figure 1). 

 
Figure 1. Dose measurements at various points in 

homogeneous phantom. 
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Dose measurements were carried out using 0.125cc 

thimble chamber in homogeneous water phantom (RFA). 

The TPS calculated monitor unit was delivered at 

SSD=100cm. Dose at three depths along the central axis 

and dose at various points along the primary axis at the 

three depths was measured (figure 1). Dose difference 

between TPS calculated and measured was found.  

Ten patients with prostate cancer were studied. For this 

study purpose, two set of plans one with IMRT and 

another with VMAT were generated in the TPS. Both 

plans were optimized for 6MV photon with similar 

planning objectives. Dose was calculated using 

Anisotropic Analytical Algorithm (AAA) with 2.5mm 

calculation grid size. Plans were evaluated using various 

indices for Planning Target Volume (PTV) coverage and 

Sparing of Organs At Risk (OARs). In addition, various 

doses received healthy tissue volume within and out of 

treatment volume was also evaluated. The mean difference 

between IMRT and VMAT was analyzed using paired ‘t’ 

and Wilcoxon signed rank test. p<0.05 was considered as 

statistical significant. 

Results 

Results showed that the maximum dose difference 

between TPS calculated and measured values at the center 

of the field was -0.64%,-0.65% and +0.71% at Dmax, 5cm 

and 10cm depths respectively (table 1). 

 Dose at central axis within field   

Depth  Field TPS  Measured Difference 

in  size (Gy) (Gy)   (%) 

water  (cm2) 

1.58 cm 5x5 100.00    99.50  0.50 

(Dmax) 10x10 100.00    100.08  -0.08 

 15x15 100.00   100.64  -0.64 

 20x20 100.00   100.64  -0.64 

 25x25 100.00    100.02  -0.02 

 30x30 100.00    100.17  -0.17 

 40x40 100.00   100.42  -0.42 

5 cm 5x5 84.60   84.31  0.34 

 10x10 86.70   86.56  0.16 

 15x15 87.20   87.77  -0.65 

 20x20 88.00   88.20  -0.23 

 25x25 88.40   88.14  0.30 

 30x30 88.60   88.32  0.31 

 40x40 88.60   88.82  -0.25 

10 cm 5x5 63.00   62.93  0.12 

 10x10 67.10   67.03  0.10 

 15x15 69.20   69.34  -0.21 

 20x20 70.40   70.49  -0.12 

 25x25 71.30   70.79  0.71 

 30x30 71.80   71.29  0.71 

 40x40 72.10   72.00  0.14 

Table 1: Dose difference between TPS calculated and 

measured dose at central axis within field 

Out of the field, the maximum dose difference among all 

points from field edge to 1cm and up to 6cm was -36%, -

28% and -15% at Dmax, 5cm and 10cm depths 

respectively. Moreover, the absolute dose difference was -

1.1cGy, -1.38cGy and -0.54cGy at Dmax, 5cm and 10cm 

depths respectively. The maximum difference was 

observed within 2cm and especially with larger field sizes. 

TPS calculated dose from 1cm to 6cm of the field edge 

was lesser than the measured values at all three depths 

(figures 2a,2b and 2c). 

 
Figure 2 a. 
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Figure 2 b. 

 
Figure 2 c. 

Figure 2a,2b and 2c: Out of field dose difference between 

calculated and measured dose from field edge to 1cm and 

up to 6cm at three depths (Dmax, 5cm and 10 cm). 

Both VMAT and IMRT plans achieved acceptable dose 

coverage and spared the OARs below the tolerance level. 

Moreover, low dose (5%) and intermediate dose (10%) 

were significantly (p<0.05) lesser with IMRT within the 

treatment field whereas VMAT reduced the low and 

intermediate dose to healthy tissue from field edge to 5cm 

significantly (p<0.002). VMAT also significantly reduced  

high dose (50%) to healthy tissue within the treatment 

field (p<0.001) (table 2 and 3). 
 

 

 

 

 

 

 

Within treatment field  

Field   Dose received healthy   p 

region  tissue volume (%)  

  Mean ± SD  

    VMAT               IMRT  

Low dose  94.32 ± 1.28 93.01 ± 5.73 0.018* 

(5%)  

Intermediate  81.87 ± 4.72 76.53 ± 9.38 0.006* 

dose (10%) 

High dose  5.88 ± 2.31 7.79  ± 2.89 <0.001$ 

(50%) 

Table 2: Dose to healthy tissue between VMAT and IMRT plans 

- within treatment field. 

Out of treatment field  

Dose   Dose received healthy   p 

  Tissue volume (%)  

  Mean ± SD  

    VMAT               IMRT  

Low dose  9.162 ± 2.93 12.810 ± 4.91 0.002$ 

(5%)  

Intermediate  1.438 ± 0.89 3.276  ± 1.92 0.001$ 

dose (10%) 

Table 3: Dose to healthy tissue between VMAT and IMRT 

plans – out of treatment field. 

‘*’ - paired t test, ‘$’ - Wilcoxon signed rank test, VMAT 

– Volumetric Modulated Arc Therapy, IMRT – Intensity 

Modulated Radiation Therapy, SD- Standard Deviation. 

Discussion 

AAPM TG-158 [10] reports recommended that dose to 

healthy tissue has to be evaluated and documented.  

For risk estimation, the healthy tissue dose needs to be 

documented with different dose levels as well as different 

regions. Before the plan evaluation process, the dose 

calculation accuracy of the planning systems in different 

regions that are i) within the treatment field and ii) out of 

the treatment field has to be validated.  
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Majer M, et al [16] studied about out of field measurement 

and showed that the TPS underestimated the out of field 

doses with both IMRT and 3DCRT. Kaderka R, et al [17] 

observed a significant difference among the out of field 

doses at distances larger than 3 cm to the target. Huang et 

al [18]. reported that with this calculation errors, making a 

clinical decision would be unambiguous and especially in 

the case of pregnant patients and patients with implantable 

electronic devices. Moreover, they observed that dose 

underestimation by Pinnacle TPS was more than 30% 

within 4 cm and while approaching far from the field edge 

the error was 100% in their study. Our study also showed 

similar underestimated dose by TPS. However, the 

maximum difference was found with larger field sizes at 

all the depths. Though the configured beam profiles were 

measured below the 2% range, the TPS underestimated 

the dose within 6cm from the field edge. As the field size 

increases the penumbra also increases. Penumbral region 

plays an important role near the field edge especially 

within 3 cms. Moreover, this study also shows that dose 

underestimation increases with field size. 

Followill et al [19] undertook a study of doses outside the 

treatment fields for IMRT and showed that for photons of 

6-MV, 18-MV, and 25-MV the whole-body equivalent 

doses per cGy were 80 µSv, 6.5 µSv, and 10 µSv, 

respectively. 

The dose increases with increasing scatter and leakage 

from the collimator head due to intensity modulation and 

are most noticeable farther from the treatment field.  Near 

the field edge, the dose is dominated by patient scatter 

which is only dependent on the volume of target [20-21]. 

Higher dose (50%) to healthy tissue within the treatment 

field has to be reduced as much as possible. Dose to 

healthy tissue from field edge to 5cm has to be reduced to 

reduce the higher risk (66%) of secondary cancer [12].  

Majer M, et al [16]. reported that IMRT increased the out 

of field (non-target) organ’s dose than 3-Dimensional 

Conformal Radiotherapy (3DCRT) plan with a mechanical 

wedge. However, none of the studies addressed the high 

and low dose received healthy tissue volume. This study 

found that higher dose received healthy tissue volume was 

significantly lesser with VMAT than IMRT. Though 

IMRT showed significant reduction of low and 

intermediate dose within the treatment field, the 

involvement of secondary cancer risk is higher with 50% 

dose received healthy tissue volume [12]. Moreover, the 

low and intermediate dose to healthy tissue from field 

edge to 5cm (higher risk region) was significantly 

controlled with VMAT plan.  

Though this was a comparison study, the documentation 

of the healthy tissue dose would help either in the 

selection of a plan or for making a clinical decision. Dose 

calculation accuracy has to improve with a suitable 

algorithm in order to account collimator scatter dose 

within and out of the treatment field and patient scatter 

dose within and out of treatment field.  

 TPS underestimates the out of field dose. Out of field 

dose calculation accuracy is reduced as the field size is 

increased. VMAT can control higher dose receives healthy 

tissue volume within the field as well as dose out of field 

dose in order to reduce secondary cancer risk. 
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