International Journal of Medical Science and Advanced Clinical Research (IJMACR)

 Available Online at: www.ijmacr.com

 Volume - 2, Issue - 4, July - August - 2019, Page No. : 51 - 56

Comparative Clinical Efficacy between Standard and Extended Magnesium Sulfate Infusion Strategies In Hypomagnesemic Critically III Patients

Jalela Sharari Alkaabneh; Ph, Ghada Fawzi Hardan; Ph, Faisal Bassam Rihani; Ph, Hakeem Marwan Alobeidullah; Ph, Amer Nabieh Al hourani; Ph, "Moh'd Nour" Mahmoud Bani Younes; Ph, Jaafar Abd Alrahman Abu Abeeleh; Ph, Sundos

Hassan Alabbadi; PharmD, Razan M. Y. Fannoun; Pharm D, Jood Suleiman Aqarbeh; PharmD.

¹King Hussein Medical Hospital, Jordanian Royal Medical Services, Amman, Jordan.

Corresponding Author: "Moh'd Nour" Bani Younes, Clinical Pharmacy Specialist, MSc Clinical Pharmacy, BCPS, BCCCP, BCNSP, BCACP, BCIDP, Chief of EN and TPN Unit, King Hussein Medical Hospital, King Abdullah II St 230, Amman 11733, Jordanian Royal Medical Services,

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Abstract

Objectives Hypomagnesemia is commonly found in critically ill patients with a various consequences including neuromuscular and neurologic dysfunction and mortality. Approximately half of IV MgSO₄ is excreted in the urine due to Mg^{+2} slow uptake. The primary purpose of this study is to determine whether an extended infusion of 2 grams MgSO₄ over 12 hours twice daily for 5 days (Strategy I) compared to a standard infusion of 5 grams MgSO₄ over 4 hours once daily for 5 days (Strategy II) results in a greater sustainance of Mg^{+2} level ≥ 2 mg/dl after at least 2 days post MgSO₄ infusion end.

Methods A retrospective analysis was conducted in our adult ICU between April 2017 and Sep 2018. Patients were excluded if they were discharged or died before completing at least 1 week of ICU admission and if magnesium level exceeded 4 mg/dl. A chi-square test was conducted to evaluate the proportion of patients in both groups of study who had late magnesium level ≥ 2 mg/dl. An independent T-test was conducted to compare the Mean±SD of % Δ Mg⁺² between Strategy I and Strategy II. **Results** There was a significant difference in the

Results There was a significant difference in the percentage of patients maintaining normal $Mg^{+2} \ge 2 mg/dL$

during the late post-infusion phase favoring the group of patients receiving extended infusion, although there was no difference between the two groups in early achievement of $Mg^{+2} \ge 2$.

Conclusion The extended infusion of $MgSO_4$ was shown to significantly increase the percentage of patient achieving target Mg^{+2} levels, decrease the length of both ICU stay and overall hospital stay, in addition to lowering 28-days ICU overall mortality rates. further investigation is needed in order to rule out other confounders that may have affected the major clinical outcomes.

Keywords Critically ill patients, Extended infusion, Hypomagnesemia, Magnesium replacement, Mortality.

Introduction

Hypomagnesemia is a common electrolyte imbalance among critically ill patients with up to 60% of them reported to have Mg⁺² deficiency, due to different etiologies including the use of loop diuretics, diarrhea, and/or malnutrition.^[1,2,3] Strong clinical evidence has linked hypomagnesemia to poor clinical outcomes including the prolonged need for mechanical ventilation and ICU stay in addition to increased mortality rate 2 to 3 times compared to normo-magnesemic patients. Assessing and correcting magnesium abnormalities in critically ill patients is crucial to avoid poor clinical outcomes and other adverse sequelae, such as coma, convulsions, heart arrhythmias, and refractory hypokalemia and hypocalcemia.^[2,3,4,5,6]

Due to poor oral intake in critically ill patients, intravenous magnesium repletion guided by serum Mg⁺² level is often necessary. However, IV replacement can be challenging due to kidney handling of magnesium. In normal kidney function, IV Mg⁺² is rapidly eliminated renally with only about half of the infused Mg⁺² retained by the body, as the remainder is excreted in the urine.^[6,7,8] Renal excretion of Mg⁺² is dependent on the changes in serum Mg⁺² levels via Ca⁺²/Mg⁺² sensing receptors on thick-ascending-limb cells. Given the slow distribution of Mg⁺² into the intracellular compartment, administration via rapid infusion will result in high peak serum concentration, leading to a hypermagnesemic state that will inhibit Mg⁺² tubular absorption and increase renal Mg⁺² elimination.^[8,9,10] According to these findings, It is reasonable to assume theoretically that Mg⁺² retention could be increased by slowing the IV infusion rate to reduce magnesium wasting by kidneys.^[7,8,9] The primary purpose of this study is to determine whether an extended infusion of 2 grams MgSO₄ over 12 hours twice daily for 5 days (Strategy I) compared to a standard infusion of 5 grams MgSO₄ over 4 hours once daily for 5 days (Strategy II) results in a greater sustaining in Mg⁺² level ≥ 2 mg/dl after at least 2 days from MgSO₄ infusion ending (Late Mg⁺² measurement). A secondary aim of our study is to evaluate the percentage changes in Mg^{+2} level (% ΔMg^{+2}) from baseline Mg⁺² level and Mg⁺² level after at least 4 hours from MgSO4 infusion ending (Early Mg⁺² measurement).

Material and Methods

This was a single-center observational retrospective study conducted in the departments of King Hussein Medical Center (KHMC) at Royal Medical Services (RMS) in Jordan. This study was approved by our Institutional Review Board (IRB), and a requirement for consent was waived owing to its retrospective design. This study included 188 hypomagnesemic critically ill patients. Flow chart of our studied patient's selection and data collection process is fully illustrated in Figure 1.

Fig 1. Flow chart of critically ill patient's selection and data collection process.

Apr: April.

CRP: C-reactive protein.

ICU: Intensive care unit.

Sep: September.

LOS: Length of stay

Results

The mean age of our 188 studied hypomagnesemic critically ill patients was 58.94 ± 10.4 years in which 131 patients (69.7%) of the eligible sample were male and 57 patients (30.3%) were female. There were significant differences between Group I and Group II regarding Mg⁺² before (Mg₁) and after (Mg₂) MgSO4 infusion commencing which was significantly lower in Group I compared with Group II in both cases with Mean difference \pm SEM of -0.05 \pm 0.01 mg/dl and -0.01 \pm 0.00

"Moh'd Nour" Bani Younes, et al. International Journal of Medical Sciences and Advanced Clinical Research (IJMACR)

mg/dl, respectively. But if we assessed the % Mg between Mg₂ and Mg₁, hypomagnesemic patients in Group I had significantly higher %ΔMg than hypomagnesemic patients in Group II with Mean difference±SEM of 5.50%±0.79%. Either an extended infusion of 2 g MgSO4 for 12 hours twice daily (Strategy I) or a standard infusion of 5 g MgSO4 for 4 hours once daily (Strategy II), all hypomagnesemic critically ill patients in both tested groups were achieved the target Mg of 2 mg/dl and above when the Mg was measured after at least 4 hours of MgSO4 infusion ending (Early Mg measurement). In contrast when the Mg was measured after at least 48 hours of MgSO4 infusion ending (Late Mg measurement), hypomagnesemic patients in Group I had significantly higher Mg₃ and %Mg≥2 mg/dl (2.03±0.08 mg/dl and 50 (53.8%), respectively) than hypomagnesemic patients of Group II (1.78±0.21 mg/dl and 6 (6.3%), respectively) with Mean difference±SEM of 0.24±0.02 mg/dl. Regarding clinical outcomes of LOS and mortality, patients in Group I had significantly lower ICU LOS, overall hospital LOS, and 28-day ICU mortality $(9.49\pm2.27 \text{ days}, 11.94\pm3.74 \text{ days}, \text{ and } 4 (4.3\%),$ respectively) than in patients of Group II (15.95±4.78 days, 22.11±5.62 days, and 72 (75.8%), respectively) with Mean differences±SEM in ICU and overall hospital LOS of -6.45 ± 0.55 days and -10.17 ± 0.69 days, respectively.

Discussion

What makes this study unique is that it compares two strategies of Mg^{+2} infusion; standard infusion versus extended infusion. In this study we were aiming to address the percentage of patients achieving normal Mg^{+2} blood levels above 2 mg/dL in two phases; phase 1 (early postinfusion phase) and phase 2 (late post-infusion phase), which are defined as at least 4 hours after the end of infusion and at least 48 hours after the end of infusion, respectively. The baseline data of the patients included in the study were analyzed and appeared as shown in table 1. The average Mean Arterial Pressure (MAP) for the patients in both groups was (75.70 \pm 12.1 mmHg) and mean Total Calories Requirements (TCR) and Protein Density for the total number of patients were (9.49 \pm 0.75 Cal/kg/day) and (1.45 \pm 0.68 g/100 Cal), respectively.

There was no difference between the two groups of the study regarding the early achievement of Mg^{+2} levels above 2 mg/dL but on the other hand, there was a significant difference in the percentage of patients maintaining normal Mg^{+2} levels above 2 mg/dL during the late post-infusion phase favoring the patients in the first group. These outcomes strongly support the retention theory which states that only around 50% of the Mg^{+2} replaced intravenously will be retained by the body, due to slow cellular uptake of Mg^{+2} and replenishment of intracellular Mg^{+2} stores, leading to serum concentrations exceeding the renal threshold.^[7,9]

The extended infusion of Mg^{+2} was shown to significantly decrease the length of both ICU stay and overall hospital stay, in addition to significantly lowering 28-days ICU overall mortality rates (4.3% vs. 75.8%). These major clinical outcomes, despite being significant, were not considered as part of the main outcomes investigated in this study because we did not address other confounders that may have affected the length of ICU or overall hospital stay, and/or overall mortality. This study is limited by its retrospective design, using single-center data. Nonetheless, our center is an experienced and high-volume unit, so our data may be useful in other centers. A larger, multisite, and prospective study is needed to control for multiple confounders.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Table 1. Baseline and follow-up comparison data of the study's hypomagnesemic critically ill patients.						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Variables			Group I	Group II	Mean	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Total	Extended MgSO4	Standard MgSO4	difference	P-Value
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(N=188)	infusion strategy	infusion strategy	±	I - Value
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(N=93)	(N=95)	SEM	
$\frac{1}{1} \frac{1}{1} \frac{1}$	Age (Yrs)		58.94±10.	58 73+10 4	59.15±10.4	-0.42±1.52	0 784 (NS)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4	58.75±10.4			0.784 (INS)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gandar	Famala	57	27 (29.0%)	30 (31.6%)		
Section131 (69.7%)66 (71.0%)65 (68.4%)5.115 (16)BW (Kg)74.05±10. 275.04±9.8173.07±10.591.96±1.49 20.188 (NS)BMI (Kg/m²)25.90±3.9 726.48±3.8325.33±4.051.15±0.58 20.047 (S)CRP (mg/dl)13.19±4.2 711.25±2.8615.09±4.57-3.84±0.56 20.001 (S)ALB (g/dl)2.37±0.182.46±0.142.29±0.170.17±0.020.000 (S)H.ALB (g/day)20.00±0.00 020.00±0.0020.00±0.000.00±0.00 2NSCRP: ALB5.73±2.454.66±1.596.77±2.69-2.11±0.320.041 (S)TCR (Cal/kg/day)9.49±0.759.86±0.589.14±0.720.72±0.090.043 (S)TCR (Cal/day)651.7±79. 6676.3±74.9627.6±76.948.7±11.1 48.7±11.10.282 (NS)PD (g/100 Cal)1.45±0.681.49±0.651.41±0.710.08±0.090.425 (NS)		Tennure	(30.3%)	27 (29:070)			0.413 (NS)
Indic(69.7%) $300 (110.3)^{2}$ 73.07 ± 10.59 1.96 ± 1.49 $0.188 (NS)$ BW (Kg) 2 75.04 ± 9.81 73.07 ± 10.59 1.96 ± 1.49 $0.188 (NS)$ BMI (Kg/m ²) 25.90 ± 3.9 7 26.48 ± 3.83 25.33 ± 4.05 1.15 ± 0.58 1 $0.047 (S)$ CRP (mg/dl) 13.19 ± 4.2 7 11.25 ± 2.86 15.09 ± 4.57 -3.84 ± 0.56 0.001 (S)ALB (g/dl) 2.37 ± 0.18 2.46 ± 0.14 2.29 ± 0.17 0.17 ± 0.02 $0.000 (S)$ H.ALB (g/day) 20.00 ± 0.00 0 20.00 ± 0.00 20.00 ± 0.00 0.00 ± 0.00 NSCRP: ALB 5.73 ± 2.45 4.66 ± 1.59 6.77 ± 2.69 -2.11 ± 0.32 $0.041 (S)$ TCR (Cal/kg/day) 9.49 ± 0.75 9.86 ± 0.58 9.14 ± 0.72 0.72 ± 0.09 $0.043 (S)$ TCR (Cal/kg/day) $651.7\pm79.$ 6 676.3 ± 74.9 627.6 ± 76.9 48.7 ± 11.1 $0.282 (NS)$ PD (g/100 Cal) 1.45 ± 0.68 1.49 ± 0.65 1.41 ± 0.71 0.08 ± 0.09 $0.425 (NS)$	Gender	Male	131	66 (71 00/)	65 (68.4%)		0.413 (NS)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		withe	(69.7%)	00(71.070)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BW	(Ka)	74.05±10.	75.04+9.81	73.07±10.59	1.96±1.49	0.188 (NS)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DW	(Kg)	2	75.04±9.01		0.1	0.100 (145)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		K_{α}/m^2	25.90±3.9	26 48+2 82	25.33±4.05	1.15±0.58	0.047(S)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DIVII (Kg/III)		7	20.46±3.63			0.047 (3)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CRP (mg/dl)		13.19±4.2	11.25±2.86	15.09±4.57	-3.84±0.56	0.001 (5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7				0.001 (5)
H.ALB (g/day) $\begin{array}{c} 20.00\pm0.0\\0\end{array}$ $\begin{array}{c} 20.00\pm0.00\\0\end{array}$ $\begin{array}{c} 20.00\pm0.00\end{array}$ $\begin{array}{c} 0.00\pm0.00\\20.00\pm0.00\end{array}$ $\begin{array}{c} 0.00\pm0.00\\0\end{array}$ NSCRP: ALB 5.73 ± 2.45 4.66 ± 1.59 6.77 ± 2.69 -2.11 ± 0.32 0.041 (S)TCR (Cal/kg/day) 9.49 ± 0.75 9.86 ± 0.58 9.14 ± 0.72 0.72 ± 0.09 0.043 (S)TCR (Cal/kg/day) $651.7\pm79.\\6$ 676.3 ± 74.9 627.6 ± 76.9 $\begin{array}{c} 48.7\pm11.1\\0.282$ (NS)PD (g/100 Cal) 1.45 ± 0.68 1.49 ± 0.65 1.41 ± 0.71 0.08 ± 0.09 0.425 (NS)105.6\pm12. 11.1 ± 1.71 11.1 ± 1.71 11.1 ± 1.71	ALB	(g/dl)	2.37±0.18	2.46±0.14	2.29±0.17	0.17±0.02	0.000 (S)
H.ALB (g/day)0 20.00 ± 0.00 20.00 ± 0.00 10.00 ± 0.00 NSCRP: ALB 5.73 ± 2.45 4.66 ± 1.59 6.77 ± 2.69 -2.11 ± 0.32 0.041 (S)TCR (Cal/kg/day) 9.49 ± 0.75 9.86 ± 0.58 9.14 ± 0.72 0.72 ± 0.09 0.043 (S)TCR (Cal/kg/day) $651.7\pm79.$ 676.3 ± 74.9 627.6 ± 76.9 48.7 ± 11.1 0.282 (NS)PD (g/100 Cal) 1.45 ± 0.68 1.49 ± 0.65 1.41 ± 0.71 0.08 ± 0.09 0.425 (NS)105.6\pm12.11.1\pm1.71 11.1 ± 1.71 11.1 ± 1.71	цлір	(g/day)	20.00±0.0	20.00±0.00	20.00±0.00	0.00±0.00	NIS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	П.ALD	(g/uay)	0				115
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CRP:	ALB	5.73±2.45	4.66±1.59	6.77±2.69	-2.11±0.32	0.041 (S)
TCR (Cal/day) $651.7\pm79.$ 6 676.3 ± 74.9 627.6 ± 76.9 48.7 ± 11.1 0.282 (NS)PD (g/100 Cal) 1.45 ± 0.68 1.49 ± 0.65 1.41 ± 0.71 0.08 ± 0.09 0.425 (NS)105.6\pm12.11.1±1.71	TCR (Cal/kg/day)		9.49±0.75	9.86±0.58	9.14±0.72	0.72±0.09	0.043 (S)
ICK (Cal/day) 6 070.3 ± 74.9 027.0 ± 70.9 0.282 (NS) PD (g/100 Cal) 1.45 ± 0.68 1.49 ± 0.65 1.41 ± 0.71 0.08 ± 0.09 0.425 (NS) 105.6\pm12. 11.1\pm1.71	TCR (Cal/day)		651.7±79.	676.3±74.9	627.6±76.9	48.7±11.1	0.282 (NS)
PD (g/100 Cal) 1.45±0.68 1.49±0.65 1.41±0.71 0.08±0.09 0.425 (NS) 105.6±12. 11.1±1.71 11.1±1.71 11.1±1.71 11.1±1.71			6				0.202 (110)
105.6±12. 11.1±1.71	PD (g/1	.00 Cal)	1.45±0.68	1.49±0.65	1.41±0.71	0.08±0.09	0.425 (NS)
SBD(mmHg) 111 2+7 27 100 1+14 77 0 0000 (S)	SPD (r	mmHa)	105.6±12.	111.2±7.37	100.1±14.77	11.1±1.71	0.000 (S)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SDF (I	lilling)	9				0.000 (3)
DBB (mmHz) $60.34\pm13.$ 66.1 ± 7.47 54.7 ± 15.08 11.3 ± 1.74 0.000 (S)		mmIIa)	60.34±13.	66 1 7 47	54 7+15 08	11.3±1.74	0.000 (5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DBP (IIIIIAg)		2	66.1±/.4/	34.7±13.08		0.000 (S)
75.70±12. 81.2.7.27 70.2.12.45 10.8±1.59 0.000 (5)	MAP (mmHg)		75.70±12.	81.2±7.37	70.3±13.45	10.8±1.59	0.000 (5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1				0.000 (S)
188.7±6.7 105.7 2.07 101.7 7.55 -6.02±0.88 0.014 (0)			188.7±6.7		101 7 7 7 7	-6.02±0.88	0.014 (0)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BG (mg/dl)		2	185./±3.8/	191./±/.55		0.014 (S)
Ca (mg/dl) 6.77±0.33 6.99±0.16 6.57±0.33 0.43±0.04 0.000 (S)	Ca (mg/dl)		6.77±0.33	6.99±0.16	6.57±0.33	0.43±0.04	0.000 (S)
cCa (mg/dl) 8.05±0.29 8.21±0.07 7.88±0.32 0.330.03 0.000 (S)	cCa (mg/dl)		8.05±0.29	8.21±0.07	7.88±0.32	0.330.03	0.000 (S)

"Moh'd Nour" Bani Younes, et al. International Journal of Medical Sciences and Advanced Clinical Research (IJMACR)

Mg ₁		1.26±0.06	1.23±0.01	1.28±0.07	-0.05±0.01	0.000 (S)
Mg ₂		2.31±0.01	2.31±0.00	2.32±0.02	-0.01±0.00	0.000 (S)
%∆Mg		84.6%±6. 07%	87.4%±1.70%	81.9%±7.44%	5.50%±0.79 %	0.000 (S)
Early %Mg≥2	Not Achieved	0 (0.00%)	0 (0.00%)	0 (0.00%)		0.000 (S)
	Achieved	188 (100.0%)	93 (100.0%)	95 (100.0%)		0.000 (5)
Mg	33	1.90±0.20	2.03±0.08	1.78±0.21	0.24±0.02	0.000 (S)
Late %Mg>2	Not Achieved	132 (70.2%)	43 (46.2%)	89 (93.7%)		0.000 (S)
Late /oivig_2	Achieved	56 (29.8%)	50 (53.8%)	6 (6.3%)		
Pre-ICU admission days		4.32±3.95	2.44±2.36	6.16±4.32	-3.72±0.51	0.000 (S)
ICU stay days		12.76±4.9 5	9.49±2.27	15.95±4.78	-6.45±0.55	0.000 (S)
Overall hospital stay days		17.07±6.9 8	11.94±3.74	22.11±5.62	-10.17±0.69	0.000 (S)
28-day ICU survival		112 (59.6%)	89 (95.7%)	23 (24.2%)		0.000 (5)
28-day ICU overall mortality		76 (40.4%)	4 (4.3%)	72 (75.8%)	-	0.000 (S)
Values are preasure square test.	sented as Mean	n±SD by using	independent T-test and	l one sample T-test	or as number (%)	by using Chi-
Group I: Patier	nts who were c	on extended Mg	CRP: C-reactive protein.			
Group II: Patie	ents who were	on standard Mg	CRP: ALB ratio: C-reactive protein to albumin			
strategy.			level ratio.			
Yrs: Years.			SBP: Systolic blood pressure.			
Kg: Kilogram.			DBP: Diastolic blood pressure.			
BW: Actual bo	ody weight.		MAP: Mean arterial pressure.			
BMI: Body ma	ass index.		BG: Blood glucose.			
S: Significant	(P-Value <0.05	5).	Ca: Total calcium level.			
NS: Nonsignif	icant (P-Value	>0.05).	cCa: Corrected total calcium level.			
N: Number of	study's patient	ts.	Mg: Total magnesium level.			

N: Number of study's patients.

TCR: Total calories requirement.

Mg₁: Baseline total magnesium level.

"Moh'd Nour" Bani Younes, et al. International Journal of Medical Sciences and Advanced Clinical Research (IJMACR)

PD: Protein density.	Mg ₂ : Total magnesium level after at least 4 hours
Δ : Changes occurred after an intervention.	of infusion ends.
ALB: Albumin level.	Mg ₃ : Total magnesium level after at least 2 days
H.ALB: Human albumin 20%.	of infusion ends.
	Early measurement: After at least 4 hours of
	infusion ends.
	Late measurement: After at least 2 days of
	infusion ends.
7. S	nyder, M., Shillingburg, A., Newton, M., Hamadani,
References	M., Kanate, A. S., Craig, M., & Cumpston, A. (2016).

- Reinhart, R. A., & Desbiens, N. A. (1985). Hypomagnesemia in patients entering the ICU. *Critical Care Medicine*, 13(6), 506-507.
- Hammond, D. A., Stojakovic, J., Kathe, N., Tran, J., Clem, O. A., Erbach, K., & King, J. (2017). Effectiveness and Safety of Magnesium Replacement in Critically Ill Patients Admitted to the Medical Intensive Care Unit in an Academic Medical Center: A Retrospective, Cohort Study. *Journal of Intensive Care Medicine*,088506661772063.
- Limaye, C. S., Londhey, V. A., Nadkar, M. Y., & Borges, N. E. (2011). Hypomagnesemia in critically ill medical patients. *Journal of the Association of Physicians of India*,59.
- Rubeiz, G. J., Thill-Baharozian, M., Hardie, D., & Carlson, R. W. (1993). Association of Hypomagnesemia and mortality in acutely ill medical patients. *Critical Care Medicine*, 21(2), 203-209.
- Charles, B. S., Menon, I., Girish, T. S., & Cherian, A. M. (2016, November). Hypomagnesemia in the ICU – Does Correction Matter? *Journal of the Association of Physicians of India*,64.
- Velissaris, D., Karamouzos, V., Pierrakos, C., Aretha, D., & Karanikolas, M. (2015). Hypomagnesemia in Critically Ill Sepsis Patients. *Journal of Clinical Medicine Research*,7(12), 911-918.

© 2019, IJMACR, All Rights Reserved

 Snyder, M., Shillingburg, A., Newton, M., Hamadani, M., Kanate, A. S., Craig, M., & Cumpston, A. (2016). Impact of intravenous magnesium infusion rate during ambulatory replacements on serum magnesium concentrations after allogeneic stem cell transplant. *Supportive Care in Cancer*,24(10), 4237-4240.

- Clemmons, A. B., Ku, P., Waller, J., & Sportes, C. (2018). Prolonged Versus Short Infusion Rates for Intravenous Magnesium Sulfate Administration in Hematopoietic Cell Transplant Patients. *Biology of Blood and Marrow Transplantation*,24(3).
- Doshi, S., Waller, J., & Clemmons, A. (2018). Prolonged Versus Short Infusion Rates of IV Magnesium in Hospitalized General Medicine Patients with Hypomagnesemia. *Hospital Pharmacy*,001857871881794.
- 10. Hansen, B., & Bruserud, Ø. (2018). Hypomagnesemia in critically ill patients. *Journal of Intensive Care*,6(1).