International Journal of Medical Science and Advanced Clinical Research (IJMACR)

 Available Online at: www.ijmacr.com

 Volume - 4, Issue - 4, July - August - 2021, Page No. : 33 - 38

Lymphocyte-to-C-Reactive Protein Ratio and Neutrophil to Lymphocyte Ratio: A Novel Predictor of Adverse Outcomes in COVID-19

¹Gaurav Sharma, Senior Resident, DNB General Medicine, RNT Medical College, Udaipur, Rajasthan

²Jainendra Sharma, Senior Resident, MD General Medicine, RNT Medical College, Udaipur, Rajasthan

³Manoj Mahera, Junior Resident, Department of General Medicine, RNT Medical College, Udaipur, Rajasthan

⁴Gurdeep Kaur, Professor, MD Medicine, RNT Medical College, Udaipur, Rajasthan

⁵Devender Sukhwal, Junior Resident, Department of General Medicine, RNT Medical College, Udaipur, Rajasthan

⁶Rajath Rao UR, Senior Resident, Department of Community and Family Medicine, AIIMS, Patna

Corresponding Author: Gaurav Sharma, Senior Resident, DNB General Medicine, RNT Medical College, Udaipur Rajasthan

How to citation this article: Gaurav Sharma, Jainendra Sharma, Manoj Mahera,Gurdeep Kaur, Devender Sukhwal, Rajath Rao UR, "Lymphocyte-to-C-Reactive Protein Ratio and Neutrophil to Lymphocyte Ratio: A Novel Predictor of Adverse Outcomes in COVID-19", IJMACR- July – August - 2021, Vol – 4, Issue - 4, P. No. 33 – 38.

Copyright: © 2021, Gaurav Sharma, et al. This is an open access journal and article distributed under the terms of the creative commons attribution noncommercial License 4.0.Which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Introduction: Systemic inflammation elicited by a cytokine storm is considered a hallmark of coronavirus disease 2019 (COVID-19). This study aims to assess the validity and clinical utility of the lymphocyte-to-C-reactive protein (CRP) ratio (LCR), versus the neutrophil-to-lymphocyte ratio (NLR) for predicting in-hospital outcomes in COVID-19.

Materials and methods: The present study was conducted at RNT Medical College Udaipur. This study was done over a period of one month after getting approval from institutional ethics committee. Written and informed consent from patients were taken. In this study 74 patients admitted in COVID wards medical wards and ICU were taken if they found COVID19 RTPCR positive and COVID19 RTPCR negative patients were excluded.

Results: In our study 74.3% patients were males and 25.7% patients were females, on admission mean of neutrophil count with standard deviation was 72.5(16.3), median of lymphocyte count with interquartile range was 15(8-28.25), median of NLR with interquartile range was 4.6(2.2-10.9), median of LCR with interguartile range was 1.1(0.1-3.75) and mean of spo₂ of patients with standard deviation was 94.6(4.3). 44.6% patients were admitted with NLR >5.5 (severe disease), 40.5% patients were admitted with NLR <3.5(mild disease), and 14.9% patients were admitted with NLR 3.5-5.5(moderate disease). 37.8% patients were admitted with spo₂ >97% (normal), 32.4% patients were admitted with spo₂ 95-97% (mild seek), 20.3% patients were admitted with spo₂ 91-94% (moderate seek), and 9.5% patients admitted with spo₂ <90% (severe seek). In present study mechanical

Corresponding Author: Gaurav Sharma, ijmacr, Volume - 4 Issue - 4, Page No. 33 – 38

ventilation required for patients whose NLR was >5.5 on admission and for patients whose LCR was <11 on admission. All mortalities were in severe disease patients whose NLR was >5.5 and low LCR (<11) at admission. Invasive ventilation/mechanical ventilation was required for 2.7% patients. Total 3 (4.1%) patients died out of which 2 (28.57%) were severely seek and 1 (6.7%) were moderately seek and p value for this was 0.004 which was significant. In present study on admission mean NLR with standard deviation was 16.5(5.6) in patients who died, Mann Whitney U value for these was 23.5 and p value was 0.01 which was significant. Median LCR with interquartile range was 0.1(0.1-0.6) in patients who were died, Mann Whitney U value for these was 51.5 and p value was 0.129 which was insignificant. Mean spo₂ of patients with standard deviation was 86.7(6.1) in patients who died, Mann Whitney U value was 17.5 and p value was 0.01 which was significant.

Discussion: In present study mechanical ventilation required for patients whose NLR was >5.5 on admission and for patients whose LCR was <11 on admission. Invasive ventilation/mechanical ventilation was required for high NLR and low LCR on admission. All mortalities were in severe disease patients whose NLR was >5.5 and low LCR (<11) at admission. Mortalities were mostly occurred in patients who was severely seek on admission.

Conclusion: As per present study severity of disease and mortality mostly occurred in patients whose NLR was high and LCR was low at admission so these parameters can be taken for severity, prognosis and outcome for COVID19 disease.

Keywords: LCR, CRP, NLR, COVID19, SD, IQR Introduction

The coronavirus disease 2019 (COVID-19) is a global pandemic caused by the novel severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). By binding to the angiotensin-converting enzyme 2 (ACE2) receptor, the S1 subset of the surface spike protein elicits the production of angiotensin 1. The ACE then converts angiotensin 1 to angiotensin 2, which in turn binds to the angiotensin receptor, upregulating the levels of endothelin-1 (ET-1). This results in a widespread inflammatory response with the release of proinflammatory cytokines and interleukins^{1,2}. The largescale unregulated production of interleukins, particularly interleukin-6 (IL-6), stimulates several downstream pathways, increasing the production of acute-phase reactants like C-reactive protein (CRP), and increases mobilization of neutrophils³. This, along with stressinduced neutrophilia, likely explains the relative lymphopenia seen in severe manifestations of the SARS-CoV-2 infection⁴⁻⁶. Several studies have sought to demonstrate the clinical utility and feasibility of the neutrophil-to-lymphocyte ratio (NLR) in predicting COVID-19 outcomes⁶. A high NLR value at admission has been proposed as suggestive of COVID-19, while confirmatory tests are pending and a rising NLR has been shown to be associated with worse clinical outcomes in severe COVID-19. While the NLR is well studied, a similar biomarker ratio, the lymphocyte-to-CRP ratio (LCR), has, so far, not been utilized. Typically, the LCR is used as a prognostic marker for several types of cancers, including colon and gastric carcinomas⁷⁻¹⁰. The rationale behind this is that the LCR serves as a good surrogate of the complex host-tumor immunological interactions that result in a systemic inflammatory process, which is believed to contribute towards the pathogenesis and progression of these carcinomas¹¹. Since COVID-19 also precipitates a systemic inflammatory response, it follows that the LCR may also be a good proxy marker in this disease process and may carry prognostic value.

The present study aims to shed light on whether LCR and NLR can be used as reliable predictors for severity, prognosis and outcome in COVID19 patients.

Observations

Table1

Gender	Ν	%
Female	19	25.7
Male	55	74.3
Total	74	100

In our study 74.3% patients were males and 25.7%

patients were females.

Table 2: Biochemical Parameters

	Ν		
Neutrophil on Admission	74	Mean(SD)	72.5(16.3)
Lymphocyte on Admission	74	Median(IQR)	15(8-28.25)
Neutrophil Lymphocyte	74	Median	4.6(2.2-
ratio on admission(NLR)		(IQR)	10.9)
Median			
Lymphocyte-CRP	74	Median(IQR)	1.1(0.1-
Ratio(LCR) on admission			3.75)
Overall mean SPO2 on	74	Mean(SD)	94.6(4.3)
admission			

In our study on admission mean of neutrophil count with standard deviation was 72.5(16.3), median of lymphocyte count with interquartile range was 15(8-28.25), median of NLR with interquartile range was 4.6(2.2-10.9), median of LCR with interquartile range was 1.1(0.1-3.75) and mean of spo₂ of patients with standard deviation was 94.6(4.3). Table 3: NLR on admission

	Frequency	Percent
<3.5	30	40.5
3.5-5.5	11	14.9
>5.5	33	44.6
Total	74	100.0

In our study 44.6% patients were admitted with NLR >5.5(severe disease), 40.5% patients were admitted with

© 2021, IJMACR, All Rights Reserved

NLR <3.5(mild disease), and 14.9% patients were admitted with NLR 3.5-5.5(moderate disease). Table 4:SPO₂ for Severity of COVID 19

SPO2	Severity	Ν	Percent
>97%	Normal	28	37.8
95-97%	Mild	24	32.4
91-94%	Moderate	15	20.3
<90%	Severe	7	9.5
Total		74	100.0

In our study 37.8% patients were admitted with spo₂ >97% (normal), 32.4% patients were admitted with spo₂ 95-97% (mild seek), 20.3% patients were admitted with spo₂ 91-94% (moderate seek), and 9.5% patients admitted with spo₂ <90% (severe seek).

Table 5: NLR on admission according to COVID 19 Severity

	Ν	Mean	Std.	Minimum	Maximum	F	Р
			Deviation			statistics	Value
Normal	28	5.882	7.3783	0.6	38.4		
Mild	24	7.083	5.7670	0.2	20.0		
Moderate	15	9.800	7.8507	1.3	22.2	1.58	0.2
Severe	7	10.614	6.0090	3.5	19.8		
Total	74	7.514	6.9627	0.2	38.4		

Table 6: Outcome status of Patients according to Severity

of COVID 19

Severity of		Outcome status		Total
COVID 19		Dead	Alive	
	Normal	0 (0)	28 (39.4)	28 (37.8)
	Mild	0 (0)	24 (33.8)	24 (32.4)
	Moderate	1 (33.3)	14 (19.7)	15 (20.3)
	Severe	2 (66.7)	5 (7)	7 (9.5)
	Total	3 (100)	71 (100)	74 (100)
Chi Value=1	3.3, Df=3, P=0.00)4*		

*P <0.05 is significant

In our study total 3 (4.1%) patients died out of which 2 (28.57%) were severely seek and 1 (6.7%) were moderately seek and p value for this was 0.004 which was significant.

.....

Table 7: Outcome of COVID 19 Patients according to

NLR at admission

		Outcome status		Total
		Dead	Alive	
	-35	0	30	30
NLR on admission	<3.5	0.0%	42.3%	40.5%
	3.5-5.5	0	11	11
		0.0%	15.5%	14.9%
	>5.5	3	30	33
		100.0%	42.3%	44.6%
Total		3	71	74
		100.0%	100.0%	100.0%
Chi Square value=3.8,	lue=0.14	•	•	

In present study all mortalities were in severe disease

patients whose NLR was >5.5

Table 8

Parameters	Values of	Ou	tcome	Mann	
	Central	status		Whitney	
	Tendency	Dead(N=3)	Alive	U Value,	
			(N=71)	P Value	
NLR at	Mean(SD)	16.5(5.6)	7.1(6.7)	23.5,	
admission				0.01*	
LCR at	Median	0.1(0.1-0.6)	1.4(0.1-	51.5,	
admission	(IQR)		3.8)	0.129	
SPO2 at	Mean	86.7(6.1)	94.9(3.9)	17.5,	
admission	(SD)			0.01*	
*P <0.05 is significant					

In present study on admission mean NLR with standard deviation was 16.5(5.6) in patients who died, Mann Whitney U value for these was 23.5 and p value was 0.01 which was significant. Median LCR with interquartile range was 0.1(0.1-0.6) in patients who were died, Mann Whitney U value for these was 51.5 and p value was 0.129 which was insignificant. Mean spo₂ of patients with standard deviation was 86.7(6.1) in patients who died, Mann Whitney U value was 17.5 and p value was 0.01 which was significant.

Table 9

	COVID 19	N	Mean	Kruskal wallis
	Severity		Rank	Test Chi
NLR at	Normal	28	30.7	square
admission	Mild	24	37.9	value=6.7,
	Moderate	15	43.1	Df=3, P=0.08
	Severe	7	51.07	
	Total	74		

Table 10: Need for Invasive/Mechanical Ventilation

	Frequency	Percent
No	72	97.3
Yes	2	2.7
Total	74	100.0

In our study invasive ventilation/mechanical ventilation was required for 2.7% patients.

Table 11

		Outcome status		
	Grading	Dead (%)	Alive (%)	Total
	Low (<11)	3 (100)	59 (83.1)	62 (83.8)
LCR	High (>11)	0 (0)	12 (16.9)	12 (16.2)
	Total	3 (100)	71 (100)	74 (100)

Chi square value=0.605, Df=1,P=0.4, Risk ratio=1.1(95% CI=0.99-1.11), (Risk of being dead with low LCR is 1.1 times higher than with high LCR)

In present study LCR was low in patients who died.

Table 12

	COVID 19	N	Mean	Kruskal wallis			
	Severity		Rank	Test Chi			
LCR at	Normal	28	40.75	square			
admission	Mild	24	44	value=10.5,			
	Moderate	15	27.9	Df=3, P=0.01*			
	Severe	7	20.79				
	Total	74					
*P<0.05 is sig	*P<0.05 is significant						

Table 13

Need for		Outcome status		Total (%)
Mechanical		Dead (%)	Alive (%)	
ventilation	No	1 (33.3)	71 (100)	72 (97.3)
	Yes	2 (66.7)	0	2 (2.7)

© 2021, IJMACR, All Rights Reserved

Gaurav Sharma, et al. International Journal of Medical Sciences and Advanced Clinical Research (IJMACR)

	Total	3 (100)	71 (100)	74 (100)	
Chi square value=48.6, DF=1, P= <0.001, Likelihood ratio=14.5, Risk					
of being dead with respect to being alive by use of Mechanical					
ventilator is 71.4 times,95% CI=10-500)					

In present study out of 3(4.1%) patients who died, 2(2.7%) patients required mechanical ventilation.

Table 14

		Need for	Mechanical	Total (%)
		Ventilation		
NLR		NO (%)	YES (%)	
Grading	<3.5	30 (41.7)	0	30 (40.5)
	3.5-5.5	11 (15.3)	0	11 (14.9)
	>5.5	31 (43.1)	2 (100)	33 (44.6)
	Total	72 (100)	2 (100)	74 (100)
Chi square value=2.55. DF=2, P=0.2				

In present study mechanical ventilation required for patients whose NLR was >5.5 on admission.

Table 15

		Need for Mechanical Grades Ventilation		
	Grades			Total
		No (%)	Yes (%)	
LCR	Low (<11)	60 (83.3)	2 (100)	62 (83.8)
grading	High (>11)	12 (16.7)	0 (0)	12 (16.2)
	Total	72 (100)	2 (100)	74 (100)
Chi square value=0.398, Df=1,P=0.5				

In present study mechanical ventilation required for patients whose LCR was <11 on admission.

Discussion

In our study more patients were males than females, on admission mean of neutrophil count was high and median of lymphocyte count was low, median of NLR was high and median of LCR was low and mean of spo₂ was 94.6%. 44.6% patients were admitted with NLR >5.5(severe disease), 40.5% patients were admitted with NLR <3.5(mild disease), and 14.9% patients were admitted with NLR 3.5-5.5(moderate disease). 37.8% patients were admitted with spo₂ >97% (normal), 32.4% patients were admitted with spo₂ 95-97% (mild seek), 20.3% patients were admitted with spo₂ 91-94% (moderate seek), and 9.5% patients admitted with spo₂ <90% (severe seek). In present study mechanical ventilation required for patients whose NLR was >5.5 on admission and for patients whose LCR was <11 on admission.

Invasive ventilation/mechanical ventilation was required for high NLR and low LCR on admission. All mortalities were in severe disease patients whose NLR was >5.5 and low LCR (<11) at admission. Mortalities were mostly occurred in patients who were severely seek on admission.

Conclusion

As per present study severity of disease and mortality mostly occurred in patients whose NLR was high and LCR was low at admission so these parameters can be taken for severity, prognosis and outcome for COVID19 disease.

References

- Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):e1007236. doi: 10.1371/journal.ppat.1007236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439–450. doi: 10.1038/nrmicro2147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006;13(8):751–752. doi: 10.1038/nsmb1123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Gaurav Sharma, et al. International Journal of Medical Sciences and Advanced Clinical Research (IJMACR)

 Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi: 10.1007/s00134-020-05991-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014;111(42):15214–15219. doi: 10.1073/pnas.1407087111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, Luo M. et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020;81(1):e6–e12. doi: 10.1016/j.jinf.2020.04.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Koike Y, Miki C, Okugawa Y, Yokoe T, Toiyama Y, Tanaka K, Inoue Y. et al. Preoperative C-reactive protein as a prognostic and therapeutic marker for colorectal cancer. J Surg Oncol. 2008;98(7):540–544. doi: 10.1002/jso.21154. [PubMed] [CrossRef] [Google Scholar]
- Okugawa Y, Toiyama Y, Yamamoto A, Shigemori T, Ichikawa T, Yin C, Suzuki A. et al. Lymphocyte-to-Creactive protein ratio and score are clinically feasible nutrition-inflammation markers of outcome in patients with gastric cancer. Clin Nutr. 2020;39(4):1209–1217. doi: 10.1016/j.clnu.2019.05.009. [PubMed] [CrossRef] [Google Scholar]
- Okugawa Y, Toiyama Y, Yamamoto A, Shigemori T, Ide S, Kitajima T, Fujikawa H. et al. Lymphocyte-Creactive protein ratio as promising new marker for predicting surgical and oncological outcomes in

colorectal cancer. Ann Surg. 2019 doi: 10.1097/SLA.00000000003239. [PubMed] [CrossRef] [Google Scholar]

- Mori K, Toiyama Y, Saigusa S, Fujikawa H, Hiro J, Kobayashi M, Ohi M. et al. Systemic analysis of predictive biomarkers for recurrence in colorectal cancer patients treated with curative surgery. Dig Dis Sci. 2015;60(8):2477–2487. doi: 10.1007/s10620-015-3648-2. [PubMed] [CrossRef] [Google Scholar]
- 11. Bacha S, Sghaier A, Habibech S, Cheikhrouhou S, Racil H, Chaouch N, Zaouri B. et al. Combined Creactive protein and Neutrophil to Lymphocyte ratio use predict survival innon-small-cell lung cancer. Tunis Med. 2017;95(12):229– 235. [PubMed] [Google Scholar]
- Nakamura T, Matsumine A, Matsubara T, Asanuma K, Uchida A, Sudo A. The combined use of the neutrophil-lymphocyte ratio and C-reactive protein level as prognostic predictors in adult patients with soft tissue sarcoma. J Surg Oncol. 2013;108(7):481–485. doi: 10.1002/jso.23424. [PubMed] [CrossRef] [Google Scholar]
- Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020 doi: 10.1002/jmv.25819. [PMC free article] [PubMed] [CrossRef] [Google Scholar]